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This paper deals with trajectory planning that is suitable for nonholonomic differentially driven wheeled
mobile robots. The path is approximated with a spline which consist of multiple Bernstein-Bézier curves that
are merged together in a way that continuous curvature of the spline is achieved. The paper presents the
approach for optimization of velocity profile of Bernstein-Bézier spline subject to velocity and acceleration
constraints. For the purpose of optimization velocity and turning points are introduced. Based on these
singularity points local segments are defined where local velocity profiles are optimized independently of each
other. From the locally optimum velocity profiles the global optimum velocity profile is determined. Since each
local velocity profile can be evaluated independently, the algorithm is suitable for concurrent implementation
and modification of one part of the curve does not require recalculation of all local velocity profiles. These
properties enable efficient implementation of the optimization algorithm. The optimization algorithm is also
suitable for the splines that consist of Bernstein-Bézier curves that have substantially different lengths. The
proposed optimization approach was experimentally evaluated and validated in simulation environment and
on real mobile robots.
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1 INTRODUCTION
Autonomous mobile robots are becoming an important part of the highly automated factories and
they are also slowly penetrating into our homes and streets. These systems need to be capable of
autonomous task planning and action scheduling. Various control and action planning approaches
have been developed during robot soccer competitions [2, 20, 24, 27]. From the kinematical aspect,
autonomous robots should be able to follow the path, which is planned to satisfy a certain given
criteria [12, 36, 37, 46], they should avoid obstacles [12, 16, 21, 39], they should prevent collisions
between themselves [13, 19, 49] and of course they should be controlled to follow the path from
the initial to the target location. This paper deals with trajectory planning, which is one of the
essential problems in autonomous mobile robotics. A lot of effort has been put to this problem in
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past years in the sense of different optimal solutions. The trajectory could be optimal in time needed
from the start to the target point [18, 32, 40, 50, 53], it could be optimal in minimum length [54],
minimum energy consumption [28, 38, 47] and many others [4, 11, 31, 36, 37, 49]. The path planning
methods can provide the solutions for static or dynamic and known or unknown environment
[14, 23, 41, 42, 55]. The approaches such as potential fields methods [3, 22, 52], the real-time
limit-cycle navigation method [27], the path planning using harmonic function-based probabilistic
road maps [25], the methods based on graph theory such as Voronoi diagrams [9, 19, 44, 51], and
variations of D⋆ algorithm [6, 10, 15], have been proposed for the path planning. In the literature
an important part of path planning problems methodologically appear in the field of intelligent
systems [1, 7, 20, 26, 34, 35, 43, 45, 48, 52]. An important area of path planning methods is based
on geometrical curves in polynomial way [17, 33, 39], and especially Bernstein-Bézier curves
[8, 19, 24, 29, 30, 32, 49], which are also considered in this paper, since these curves have some nice
properties that can be leveraged in the optimization of the path (given in Section 3).
Trajectory planning can be broken down into two steps: path searching (shape optimization)

and velocity profile optimization (optimization of the time function). The velocity profile path
optimization, which is the main topic of this paper, has been considered in [32, 40, 47, 50]. In this
paper, time optimal velocity profile planning subject to acceleration and velocity constrains is
presented. We present the algorithm for velocity profile optimization that is based on a set of turning
and velocity points (singularity points). Around each turning point locally optimum velocity profiles
are defined. Based on the set of singularity points, the sufficient domain of locally optimum velocity
profiles is defined in a way that the local velocity profiles each can be evaluated independently of
each other. The locally optimum velocity profiles can be combined into a globally optimum velocity
profile. In the paper we present how the optimization approach can be used on a parametric spline
that consist of multiple Bernstein-Bězier curves. It turns out that the entire trajectory need to have
continuous curvature, which can be achieved with merging multiple Bernstein-Bězier curves using
appropriate merging conditions.

The trajectory optimization approach presented in the paper can be used in various applications
of differentially driven wheeled mobile robots. An example application of the case considered is the
search for velocity profile of a delivery robot in a factory that drives along a fixed track between
different delivery stations in order to minimize the delivery times. In this case it is assumed that
the shape of the path is given in advance and should not be changed in the optimization. Therefore
this optimization problem also does not consider dynamic accommodation of the path to the
current situation in the environment (e.g. other delivery robots). Another example of application of
trajectory optimization is in the case of the cooperation of a wheeled mobile system with a human,
e.g. as for example in the rehabilitation therapy or autonomous wheel chairs inside buildings.
Also in this case the shape of the path can be prescribed and the goal is to find the optimum
velocity profile that respects the acceleration and velocity constraints. In this case the constraints
are defined based on the patient capabilities or based on the desired drive comfort and health and
safety limitations. In any case the acceleration and velocity constraints are upper bounded by the
maximum allowable dynamic properties of the wheeled mobile system that insure normal drive
conditions (e.g. no wheel slippage, no turn-over or loosing ground contact with any of the wheels).

The paper is organized as follows. In Section 2 the problem is stated and main contributions of
the paper are presented. The concept of path planning is described in Section 3. The experimental
results of the time optimal path planning with different constraints are given in Section 4. And
finally, in Section 5 the conclusions are given.
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Fig. 1. The generalized coordinates of the mobile robot.

2 STATEMENT OF THE PROBLEM
The time optimal design of Bernstein-Bézier curves is proposed for nonholonomicmobile system in a
two dimensional free-space environment. We have in mind a two-wheel differentially driven mobile
robot. The architecture of the robot has a non-integrable constraint in the form ẋ sinφ − ẏ cosφ = 0
resulting from the assumption that the robot cannot slip in the lateral direction, where qT (t ) =
[x (t ) y (t ) φ (t )] are the generalized coordinates as defined in Figure 1. The kinematic model of the
mobile robot with tangential velocity v (t ) and angular velocity ω (t ) is

q̇(t ) =



cosφ (t ) 0
sinφ (t ) 0

0 1



[
v (t )
ω (t )

]
. (1)

A path can be defined as a parametric curve rTλ (λ) = [xλ (λ), yλ (λ)], where the parameter λ is
defined in the range 0 ≤ λ ≤ 1. The parameter λ is known as normalized time and its relation to the
real time t is considered to be non-linear, i.e. λ = λ(t ), in a way that the condition rλ (λ(t )) = r (t )
is satisfied, i.e. the shape of the curve is not changed. Sometimes a pure linear relation between the
normalized and real time is considered (λ(t ) ∝ t ), but not in this paper.

From the equivalence of the infinitesimals of the curve with respect to the normalized and real
time:

drλ (λ(t )) = dr (t ) (2)
vλ (λ(t )) dλ = v (t ) dt , (3)

the relation between the tangential velocity v (t ) with respect to the real time and the tangential
velocity vλ (λ) with respect to the normalized time is obtained:

v (t ) = vλ (λ(t ))λ̇(t ) =
√
x ′λ

2 (λ(t )) + y ′λ
2 (λ(t ))λ̇(t ) . (4)

The derivatives with respect to the normalized time are marked with an apostrophe (e.g. x ′λ (λ) =
dxλ (λ)

dλ ) and derivatives with respect to the real time are marked with a dot (e.g. ẋ (t ) = dx (t )
dt ). In a

similar way as relation between the tangential velocity with respect to real time t and normalized
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time λ is given in (4), the following entities can be derived: curve direction φ (t ),

φ (t ) = arctan
y ′λ (λ(t ))

x ′λ (λ(t ))
+Cπ = φλ (λ(t )), C ∈ Z , (5)

angular velocity ω (t ),

ω (t ) =
x ′λ (λ(t ))y

′′
λ (λ(t )) − x

′′
λ (λ(t ))y

′
λ (λ(t ))

v2
λ (λ(t ))

λ̇(t ) = ωλ (λ(t ))λ̇(t ) , (6)

tangential acceleration aT (t ),

aT (t ) =
x ′λ (λ(t ))x

′′
λ (λ(t )) + y

′
λ (λ(t ))y

′′
λ (λ(t ))

vλ (λ(t ))
λ̇2 (t ) +vλ (λ(t ))λ̈(t ) =

= aT λ (λ(t ))λ̇
2 (t ) +vλ (λ(t ))λ̈(t )

(7)

and radial acceleration aR (t ),

aR (t ) = ωλ (λ(t ))vλ (λ(t )) = aRλ (λ(t ))λ̇
2 (t ) . (8)

The curve curvature κ (t ) is defined as

κ (t ) =
ωλ (λ(t ))

vλ (λ(t ))
= κλ (λ(t )) . (9)

The relation between real and normalized entities in (4) to (9) are dependent on the time-
normalization function λ(t ), except for the direction (5) and curvature (9) of the curve. It is easy
to observe that these relations simplify if only a simple linear relation between the normalized
and true time is considered. But when a general non-linear mapping λ(t ) is considered, the curve
velocity profile can be designed independently of the curve shape.

The idea in this paper is to find a transparent algorithm to define the maximal allowed velocity
profile on Bernstein-Bézier curve to stay inside its acceleration and velocities constraints. Those
constraints are given with the maximal radial acceleration aRmax , the maximal tangential accel-
eration aTmax , which can be defined based on the dynamical constraints of the mobile robot (e.g.
based on the wheel friction, maximal allowable centripetal force) [32]. Additionally, the tangential
and radial acceleration should be confined to the inside of the ellipsoid(

aT
aTmax

)2
+

(
aR

aRmax

)2
≤ 1 . (10)

The problem is also constrained with the maximal tangential velocity vmax and the maximal
angular velocity ωmax of the mobile robot. These maximum possible velocities are determined
by the capabilities of the robot actuators and also the environmental conditions (e.g. type of
the surface). However, in some practical applications these velocities could be constrained even
more. For example, these velocities could be bounded based on the desired maximum allowable
or stopping time or stopping distance, given known maximum deceleration of the robot (e.g.
vmax =

√
2aTmaxdmin , where dmin is the minimum stopping distance). It is also assumed that the

mobile robot can only move forward. This means that the tangential velocity is always positive
(v ≥ 0). This is a reasonable assumption that is not uncommon in the field of autonomous mobile
robots [5]. Even though robot drive mechanics almost always allow driving in reverse direction,
this is not always desired, since many mobile robots only have sensors that can detect obstacles in
the front part of the robot (e.g. due to sensor cost and also mounting restrictions). Therefore safe
and collision-free robot operation can not be guaranteed for reverse driving.
Given a feasible path from start to goal point, the optimization problem is to find the velocity

profile that reaches the end of the path in minimum time in a way that none of the acceleration and
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velocity constraints are violated. Needless to say that the velocity profile need not only be optimal
but also feasible.
The velocity profile optimization presented in this paper is designed for use on a spline that

consists of multiple Bézier curves, which may not all be of the same order. To be able to satisfy the
acceleration constraints, the final tangential and angular velocity profiles need to be continuous.
According to (9) it is therefore required that the curvature of the entire curve is also continuous.
Therefore, for the sake of completeness, the rules for joining multiple Bézier curves of different
orders in a way that the desired continuity of the curve curvature is achieved are also presented.

The proposed velocity profile optimization approach is based on a set of singularity (velocity and
turning) points, which will be defined later. It turns out that in the case of continuous curvature the
complete set of singularity points can be separated into velocity and turning points if only class of
a single element in the set of singularity points is known.

In the presented approach only the curve velocity profile is optimized, i.e. we are only searching
for the optimum time function λ(t ) that ensures the fastest traversal of the trajectory. The shape of
the curve is not and should not be modified during the optimization process. Therefore the shape of
the curve can also be considered as an additional constraint that needs to be satisfied. However, due
to approximations and numerical artifacts some small deviations from the desired shape of the path
are allowed — the error is also allowed to slowly drift with time. If this error is not too large, it can
be eliminated with an appropriate feedback control without (or appropriately small) violation of
the velocity and acceleration constraints. The proposed approach is also suitable for parallelization,
since the optimum velocity profile can be determined based on independent optimization of local
velocity profiles that are bounded by singularity (velocity and turning) points. This is important
in the case of time-critical operations as it is the case of on-line path generation or optimization
of path shape along the velocity profile. If the shape of the path also need to be optimized, the
presented velocity profile optimization algorithm can be used as a subroutine to find the optimum
trajectory in a similar way as it was presented in [47, 50].

3 OPTIMUM VELOCITY PROFILE
An optimization of the velocity profile is made on a spline that consist of multiple Bernstein-Bézier
curves, which can be used to approximate an arbitrary path with the desired smoothness. First,
Bernstein-Bézier parametric curves are introduced briefly in Section 3.1. In Section 3.2 the approach
for merging multiple Bézier curves into a single spline in a way that the spline curvature, tangential
velocity and angular velocity are continuous functions are presented. Then the velocity and turning
points are introduced (Section 3.3), which are used in the proposed approach (Section 3.4) of velocity
profile optimization of the spline subject to velocity and acceleration constraints that are declared
in Section 2.

3.1 Bernstein-Bézier parametric curves
Given a set of b ∈ N control points P0, P1, . . . , Pb , the corresponding Bernstein-Bézier curve (or
Bézier curve) is given by

rλ (λ) =
b∑
i=0

piBi,b (λ) , (11)

where Bi,b (λ) is a Bernstein polynomial, λ is a normalized time variable (0 ≤ λ ≤ 1) and pi ,
i = 0, 1, . . . ,b, stands for the local vector of the control point Pi . Bézier curves can be defined for
N -dimensional space, N ∈ N. In the case of a 2-D space the curve rλ (λ) and the vectors pi are two
element vectors: rTλ (λ) = [xλ (λ), yλ (λ)] and pTi = [px,i , py,i ]. The Bernstein polynomials, which
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are the base functions in the Bézier-curve expansion, are given as:

Bi,b (λ) =

(
b

i

)
λi (1 − λ)b−i , i = 0, 1, . . . ,b , (12)

which have the following properties (the domain of definition is 0 ≤ λ ≤ 1): 0 ≤ Bi,b (λ) ≤ 1 for
every i = 0, 1, . . . ,b and

∑b
i=0 Bi,b (λ) = 1. An example of a Bézier curve with eight control points

(seventh-order curve, b = 7) is shown in Figure 2.
The derivative of a Bézier curve is again a Bézier curve:

drλ (λ)
dλ

= b
b−1∑
i=0

Bi,b−1 (λ) (pi+1 − pi ) . (13)

The derivative of order d ≥ 0 at the end points is dependent only on the first or last d control
points, respectively.

Fig. 2. Example of a Bézier curve with eight control points p0 to p7 and a graphical representation of the
influence of the control points p0, p1 and p2 on properties of the curve in the start point of the curve (vλ0 , 0).
At the bottom normalized tangential (left) and angular (right) velocity profiles of the curve are shown.

Entities (4), (5), (6) and (9) can be expressed with control points if the terms in the equations are
substituted with the appropriate derivatives. We are especially interested in these propertied in the
curve end points, since the values in the end points need to be considered in combining the curves
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into a spline — the smoothness of the spline depends on the conditions considered in the end points.
For example, the tangential velocity in the starting point of the curve can be expressed as

vλ0 = lim
λ→0+

vλ (λ) = b
√
(px,1 − px,0)2 + (py,1 − py,0)2 , (14)

and the direction of the curve in the starting point is

φ0 = lim
λ→0+

φλ (λ) = arctan
py,1 − py,0

px,1 − px,0
+Cπ , C ∈ Z . (15)

However, definition (15) is only valid if the velocity in the starting point is not zero, i.e. p0 , p1. If
p0 = p1 the direction of the curve in the starting point can be defined as

φ0 = lim
λ→0+

φλ (λ) = arctan
py,2 − py,0

px,2 − px,0
+Cπ , C ∈ Z . (16)

Therefore some special care need to be taken when the tangential velocity (and derivatives of the
tangential velocity up to some higher derivative) is zero. Normally we assume that the tangential
velocity along the curve is non-zero to avoid these singularities.

The following equations show how the control points should be placed in order to achieve some
desired properties in the starting point of the curve (vλ0 , 0):

p0 =
[
x0 y0

]T
, (17)

p1 =
vλ0

b

[
cosφ0 sinφ0

]T
+ p0 , (18)

p2 =
1

b (b − 1)

[
cosφ0 −vλ0 sinφ0
sinφ0 vλ0 cosφ0

] [
aT λ0
ωλ0

]
+ 2p1 − p0 . (19)

The influence of these control points is also given graphically in Figure 2.

3.2 Combining multiple Bernstein-Bézier curves into a spline
High-order Bernstein-Bézier curves are known to have poor numerical stability and are also
computationally expensive to evaluate. Since combining multiple Bernstein-Bézier curves into a
single spline enables approximation of an arbitrary path, it is normally recommended to create a
path as a spline that consist of multiple low-order Bernstein-Bézier curves — this is always possible.
The required smoothness (i.e. order of continuity) of the spline defines the minimum order of the
Bernstein-Bézier curves in the spline. A spline that consists of multiple Bernstein-Bézier curves
also has a nice property of locality, i.e. each local curve in the spline can be modified to some
degree without any effect on the rest of the spline. This can be achieved by moving the free control
points (i.e. the control points that do not change the desired smoothness properties in the curve
boundary points) — if the curve has no such points, order of the curve can always be increased to
get this additional degree of freedom. Moreover, a spline can easily be extended without changing
the initial curve. Therefore merging of multiple Bernstein-Bézier curves into a spline enables great
flexibility when it comes to designing and optimizing a path. Next the essentials of merging two
Bézier curves of different orders are presented for the sake of completeness.
We assume that the normalized time λ of the spline that consists of Λ ∈ N Bézier curves runs

from 0 to Λ. This can be achieved with a simple time shifting, i.e. the normalized time of the i-th
Bézier curve (i = 1, 2, . . . ,Λ) that runs from 0 to 1 needs to be time shifted into normalized time of
the spline from (i − 1) to i . We will consider a merging of two Bézier curves of different orders,
rλ, j (λ) of order bj and rλ, j+1 (λ) of order bj+1, into a spline. The conditions for merging the curves
into a spline can be derived based on the required spline smoothness: continuous spline (continuity
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C0), continuous spline with continuous first derivatives (continuity C1), continuous spline with
continuous first and second derivatives (continuity C2) or some others.

Continuity C0 of the spline is achieved when the first control point of the Bé curve j +1 coincides
with the last control of the curve j:

p0, j+1 = pbj , j . (20)

To achieve continuity of the angle φλ and velocity vλ also in the spline junctions, the additional
conditions for continuity C1 need to be imposed, which yield:

p1, j+1 =

(
1 +

bj

bj+1

)
pbj , j −

bj

bj+1
pbj−1, j . (21)

However, there are some cases that require additional attention. The solution (21) is valid only
if vλbj , j = vλ0, j+1 , 0. In the case vλbj , j = vλ0, j+1 = 0 ∧ aT λbj , j = aT λ0, j+1 , 0 the following
placement of control points achieves continuity C1:

p2, j+1 =

(
1 +

bj

bj+1

)
pbj , j −

bj

bj+1
pbj−2, j . (22)

The required placement of control points for other special conditions (e.g. vλbj , j = vλ0, j+1 =

0 ∧ aT λbj , j = aT λ0, j+1 = 0 ∧ ȧT λbj , j = ȧT λ0, j+1 , 0) can also be derived. The continuity of spline
curvature κ is obtained if the spline has continuity C2 that is achieved with the following placement
of the control points around the curve junction:

p2, j+1 =

(
1 +

bj

bj+1

(
2 +

1 + bj
1 + bj+1

))
pbj , j−

− 2
(
1 +

bj (1 + bj )
bj+1 (1 + bj+1)

)
pbj−1, j +

bj (1 + bj )
bj+1 (1 + bj+1)

pbj−2, j .

(23)

As in the case of (21), the (23) is only valid for vλbj , j = vλ0, j+1 , 0, otherwise a special solution for
the singular case need to be derived.

In the case of non-zero tangential velocity in the curve junction point (vλbj , j , 0), the relations
(20), (21) and (23) ensure continuity of the curve, curve direction, tangential velocity, angular
velocity, curvature and tangential acceleration. Without loss of generality, we therefore require
that control points are placed in a way that non-zero tangential velocity is achieved, i.e. all the first
and last few control points should not coincide, respectively.

3.3 Velocity and turning points
The curvature κλ (λ) is given as the fractional-rational function defined in (9). This function has no
poles when the velocity vλ (λ) is different from zero, but it can have zeros, which then results in
the zero curvature. The zeros are therefore the first set of very important points defined by the
curvature κλ (λ). This set is denoted to belong to a set of velocity pointsVP. Around these points
the velocity can be locally maximal because of small radial acceleration. The second set consists of
points where the magnitude of curvature is locally maximal, and it is denoted as the set of turning
points TP . Both sets together form the set of the motion singularity points denoted as SP.
The derivation of the curvature signum gives the information about the change of the sign in

curvature, which are the elements of the set of velocity pointsVP = {λV Pi }i=1, ...,NV P , which has
NV P elements:

VP ⊇ SP1 =


λi :

d sign(κλ (λ))
dλ

�����λ=λi
, 0



. (24)
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The signum function sign(x ) is defined as:

sign(x ) =



1 , if x ≥ 0 ;
−1 , otherwise.

(25)

This is a piecewise-continuous function that has discontinuities where the change of function
occurs. The discontinuity points of the signum function sign( f (λ)) are identical to the singular
points of the signum function derivative with respect to λ, which can be strictly defined as:

d sign( f (λ))
dλ

= lim
ϵ→0

limζ→λ+ϵ sign( f (ζ )) − limζ→λ−ϵ sign( f (ζ ))
2ϵ

. (26)

Due to the assumption that vλ (λ) > 0, it holds that sign(κλ (λ)) = sign
(
κλ (λ)v

l
λ (λ)

)
, where l ∈ N.

The set of singularity points SP1 defined in (24) can therefore also be obtained from

VP ⊇ SP1 =



λi :

d sign
(
κλ (λ)v

3
λ (λ)

)
dλ

�������λ=λi
, 0



. (27)

Although this may seem like a more complicated solution, it is normally simpler to evaluate once
the term κλ (λ)v

3
λ (λ) is simplified, taking into account (9) and (6), to only

κλ (λ)v
3
λ (λ) = x ′λ (λ)y

′′
λ (λ) − x

′′
λ (λ)y

′
λ (λ) . (28)

An example of determining the set of special points SP1 ⊆ VP from the curve curvature is
depicted graphically in the top row in Figure 3.

However the set of singularity points SP1 does not give the complete set of velocity pointsVP.
The remaining velocity points can be found in the set of singularity points SP2 that is defined as

SP2 =



λi :

d sign
( dκλ (λ)

dλ

)
dλ

�������λ=λi
, 0



. (29)

These singularity points are shown in the middle row in Figure 3. Beside the velocity points, the
set SP2 also contains the set of turning points T P = {λT Pi }i=1, ...,NT P , which has NT P elements
and defines the values of the normalized time λ where the radius of the curve is locally minimal.
An element λi ∈ SP2 belongs to the set of turning points T P ⊆ SP2 if the following condition is
satisfied:

sign
(

d2κλ (λ)

dλ2 κλ (λ)

) �����λ=λi < 0 ⇒ λi ∈ T P (30)

and to the set of velocity pointsVP = SP1 ∪ (SP2 \ T P) if the next condition is true:

sign
(

d2κλ (λ)

dλ2 κλ (λ)

) �����λ=λi > 0 ⇒ λi ∈ VP , (31)

which can be observed graphically in the bottom row in Figure 3.
The elements of the set of singularity points SP ⊇ SP1 ∪ SP2 ∪ {0,Λ} = {λSPi } are arranged

in increasing order λSPi < λSPi+1 , i = 1, . . . ,NSP − 1 where NSP stands for the number of the
singularity points. Note that also the curve end points (λ = 0 and λ = Λ) have been added to the
singularity points. If the curvature is a continuous function, then it can be observed that elements
in the ordered set of singularity points SP = VP ∪ T P (VP ∩ T P = ∅) alternate between the
elements that belong to the set of velocity points VP and the elements that belong to the set
of turning points T P. Once all the singularity points are found and ordered it therefore suffices
to determine only the type of a single element in the set SP to obtain the sets VP and T P.
Moreover, in the optimization approach presented in Section 3.4 we require that the ordered set
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Fig. 3. Determination of singularity (SP), velocity (VP) and turning (TP) points from the continuous curvature
of a spline that consist of two Bézier curves.

of singularity points SP alternates between the velocity and turning points. When combining
multiple smooth curves into a spline we therefore enforce that curve merging is made in a way
that ensures continuity of curvature over the entire spline as it is presented in Section 3.2.

3.4 Velocity-profile optimization
In a turning point the curve curvature is locally maximal. Since the optimization goal is to find
the velocity profile that ensures the shortest path-traversal time, the maximum velocity in the
turning point that does not violate the constraints need to be determined. In the turning point the
tangential acceleration is changing the sign, from negative to positive. So, in the turning point,
denoted as TPi , i = 1, . . . ,NT P , the tangential acceleration is equal to zero, and it is obtained at
normalized time λT Pi and where the curvature equals κλ (λT Pi ). According to this, the maximum
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velocity in the turning point vT Pi due to the allowed radial acceleration aR,max is given as

vT Pi =

√
aR,max

|κλ (λT Pi ) |
. (32)

Clearly, the angular velocity in the turning point ωT Pi is defined by (9). Taking into account the
velocity constraint vmax and angular velocity constraint ωmax the following set of rules apply:

if vT Pi > vmax , then vT Pi = vmax ,

ωT Pi = κλ (λT Pi )vT Pi
(33)

and

if |κλ (λT Pi ) |vT Pi > ωmax , then vT Pi =
ωmax

|κλ (λT Pi ) |
,

ωT Pi = ωmax sign
(
κλ (λT Pi )

)
.

(34)

After the constraints are applied, the allowable radial accelerations in the turning points are:

aR (t (λT Pi )) = κλ (λT Pi )v
2
T Pi , i = 1, . . . ,NT P . (35)

Given a set of NSP ordered singularity points SP that alternates between velocity and turning
points, the segments between the singularity points can be defined as:

Si = {λ : λSPi < λ < λSPi+1 , i = 1, . . . ,NSP − 1} , (36)

Around a turning point a locally time-optimal velocity profile can be obtained if we apply
maximum allowable acceleration towards the next velocity point and if the turning point is reached
with maximum allowable deceleration. To each turning point TPj , j = 1, . . . ,NT P one locally
optimum velocity profile is assigned. If λT Pj = λSPi ∈ T P, then {λSPi−1 , λSPi+1 } ∈ VP and intervals
before and after the turning point λT Pj are defined with segments Si−1 and Si , respectively. The
maximum allowable tangential acceleration and deceleration are calculated as proposed in [32]:

āT (t (λ)) = aT ,max

√
1 −

(
aR (t (λ))

aR,max

)2
,

aT (t (λ)) = −aT ,max

√
1 −

(
aR (t (λ))

aR,max

)2
.

(37)

Hence, the maximum allowable increase of the tangential velocity due to the acceleration āT (λ)
along the interval Si (λT Pj = λSPi < λ < λSPi+1 ) is:

v (t (λ)) −vT Pj =

t (λ)∫
t (λT Pj )

āT (τ ) dτ =
λ∫

λT Pj

āT (t (ζ ))
vλ (ζ )

v (t (ζ ))
dζ . (38)

Similarly, the maximum allowable tangential deceleration is enforced in the interval Si−1 (λSPi−1 <
λ < λSPi = λT Pj ) that ensures the desired tangential velocity in the turning point TPj :

vT Pj −v (t (λ)) =

t (λ)∫
t (λj,T P )

aT (τ ) dτ =
λ∫

λj,T P

aT (t (ζ ))
vλ (ζ )

v (t (ζ ))
dζ . (39)
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In integrations (38) and (39) the constraints need to be taken into account:

if
�����
aR (t (λ))

κλ (λ)

�����

1
2

> vmax , then aR (t (λ)) = κλ (λ)v
2
max ,

v (t (λ)) = vmax ,

ω (t (λ)) = κλ (λ)vmax

(40)

and

if |aR (t (λ))κλ (λ) |
1
2 > ωmax , then aR (t (λ)) =

ω2
max

|κλ (λ) |
,

v (t (λ)) =
ωmax

κλ (λ)
,

ω (t (λ)) = ωmax sign(κλ (λ)) .

(41)

Each local optimum velocity profile needs to be determined on a domain Lj that consist of
a deceleration domain Dj and an acceleration domain Aj , i.e. Lj = Aj ∪ Dj , which do not
overlap (Aj ∩ Dj = ∅). The acceleration domain always consists of segment Si , i.e. Si ⊆ Aj , and
deceleration domain always contains segment Si−1, i.e. Si−1 ⊆ Dj . However in order to determine
the global optimum velocity profile by merging the local optimum profiles, the integration bounds
in (38) and (39) might need to be extended to the neighboring segments. The acceleration and
deceleration segments are therefore:

Aj = Si ∪ Si+1 ∪ . . . ∪ Si+aj−1 ,

Dj = Si−1 ∪ Si−2 ∪ . . . ∪ Si−dj ,
(42)

where aj ,dj ∈ N, 1 ≤ aj ≤ NSP −i and 1 ≤ dj ≤ i−1. Although the locally optimum velocity profile
could be evaluated over all available segments, this is normally not required and can consume
a lot of additional computational time, especially if the path is very long (i.e. when the spline is
comprised of many curves).
Figures 4 and 5 show an example of local optimum tangential and angular velocity profiles for

every domain around each of the turning points, respectively. The grayed-out area in the figures
represent the inadmissible region that is defined by the velocity constraints given in (32) to (34).
It can be observed that the domains of local velocity profiles overlap. The size of overlapping is
determined in a way that the global velocity profile can be obtained from the optimum local velocity
profiles and that each local velocity profile can still be evaluated independently of each other, as it
is presented next.
First, we present the conditions that enable determination of sufficient range of acceleration

and deceleration domains that are defined with the integers aj and dj . The conditions are not also
necessary, but have been defined in a way that enable independent calculation of each optimum
local velocity profile. Notice that all the segments Si+2p (p ∈ Z) start in a turning point and end in a
velocity point and all the segmentsSi+2p−1 (p ∈ Z) start in a velocity point and end in a turning point.
Let us assume that the locally optimum velocity profile that is defined on domain Lj is denoted
as vLj (t (λ)), j = 1, 2, . . . ,NT P . After the integral (38) is evaluated over each consequent domain
in Aj the following conditions are evaluated. If the integration ended in a velocity point and the
integrated velocity vLj in that point is less than the velocity constraint vmax , then the integration
should continue to the next segment — e.g. this can be observed in Figure 4 on the acceleration
domain A2 ⊆ L2. Else if the integration ended in a turning point and the integrated velocity in
that point is less that the velocity in the corresponding velocity point, then the integration should
also continue to the next segment. Otherwise, the integration over the remaining segments is not

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Optimum Velocity Profile of Multiple Bernstein-Bézier Curves 1:13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

6 [1]

0

0.4

v L
1
(t

(6
))

[m
=
s]

Local tangential velocity pro-le on domain L1

TP1 TP2 TP3 TP4V P1 V P2 V P3 V P4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

6 [1]

0

0.4

v L
2
(t

(6
))

[m
=
s]

Local tangential velocity pro-le on domain L2

TP1 TP2 TP3 TP4V P1 V P2 V P3 V P4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

6 [1]

0

0.4

v L
3
(t

(6
))

[m
=
s]

Local tangential velocity pro-le on domain L3

TP1 TP2 TP3 TP4V P1 V P2 V P3 V P4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

6 [1]

0

0.4

v L
4
(t

(6
))

[m
=
s]

Local tangential velocity pro-le on domain L4

TP1 TP2 TP3 TP4V P1 V P2 V P3 V P4

Fig. 4. Local optimum tangential velocity profiles on the local domains around all the turning points. The
grayed-out area bounded by the dashed line represents the inadmissible region where the velocity constrains
cannot be respected.

required, i.e. the last segment over which the integration has been made is Si+aj−1 — e.g. in Figure
4 the acceleration domain A2 ⊆ L2 and the acceleration domain A3 ⊆ L3 both end at the velocity
pointVP4. When the integration is made from a velocity point towards the turning, the integration
can be terminated as soon as the boundary of inadmissible velocity region (determined in (32) to
(34)) is reached — e.g. this can be observed in Figure 4 on the acceleration domain A1 ⊆ L1. The
same conditions apply when determining the range of deceleration segments Dj and the number
dj . Local velocity profiles are optimized on a domain larger than the minimum necessary domain
for determination of the global optimum velocity profile. However, there are some other benefits.
Since each local velocity profile can be optimized independently of the other local velocity profiles,
this part of the optimization algorithm is suitable for concurrent implementation. Furthermore, if
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Fig. 5. Local optimum angular velocity profiles on the local domains around all the turning points. The
grayed-out area bounded by the dashed line represents the inadmissible region where the velocity constrains
cannot be respected.

the path is extended or modified only the local velocity profiles on the modified segments need to
be (re)calculated.

Let us make a remark on optimization at the segments in the ends of the path. If the path ends in
a velocity point, the optimization of local profiles is as described above. However, if the end point
is a turning point, then the local velocity profile need to be determined only on acceleration or
deceleration segments, whether the turning point is the curve end or start point, respectively. If
particular initial and final velocities are also required, it is straight forward to incorporate these
if the end points are turning points. In the case the end point is a velocity point, additional local
velocity profile need to be introduced and the same optimization approach need to be taken in a
way that the end point is considered to behave like a turning point.
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Once all the locally optimum velocity profiles are obtained the globally optimum velocity profile
can be determined. The overall velocity v (λ) is obtained if all the segments vLj (t (λ)) (λ ∈ Lj ) are
merged together together as follows:

v (t (λ)) = min
j

vLj (t (λ)) , (43)

where theminimization is made only over the velocity profilesvLj (t (λ)) that contain the normalized
time λ in their domain of definition, i.e. λ ∈ Lj .

Finally, the complete time function t (λ) that gives the relation between the normalized and real
time can be obtained from integration of (3):

t (λ) =

t (λ)∫
0

dτ =
λ∫

0

vλ (ζ )

v (t (ζ ))
dζ (44)

The total time Tf in that is needed to traverse the entire path is therefore:

Tf in = t (Λ) − t (0) =
Λ∫

0

vλ (ζ )

v (ζ )
dζ . (45)

Let us present a proof that this global velocity profile that has been obtained from local optimum
velocity profiles is indeed an optimum solution. First we can observe that the ordered set of
singularity points alternates between the velocity and turning points. Since each local optimum
velocity profile is evaluated at least in the domain between the two adjacent velocity points of the
turning point for all the turning points, the whole domain of the path is covered by the local velocity
profiles. We can also observe that the lower boundary of admissible velocity region that is defined by
the equations (32) to (34) is continuous (the dashed lines in Figures 4 and 5). The end points of each
optimum local velocity profile coincide with the aforementioned boundary of admissible velocity
region. Therefore the adjacent local optimum velocity profiles must be intersecting and that means
that the optimum velocity profile calculated from (43) is continuous. If the global velocity profile
would be calculated from local optimum velocity profiles in any other way, this would introduce
discontinuities, which are inevitably connected with violation of acceleration constraints. However,
there is an infinite family of continuous velocity profiles v⋆(t ) that have tangential velocity below
the global tangential velocity calculated from (43), i.e. v⋆(t ) ≤ v (t ). Since the length of the path
associated with each of the velocity profile need to be the same:

Tf in∫
0

v (t ) dt =

Tf in,⋆∫
0

v⋆(t ) dt , (46)

it is obvious that the traversal time of any other velocity profile that the one obtained from (43) is
longer, i.e. Tf in ≤ Tf in,⋆. Therefore the global velocity profile obtained from the local optimum
velocity profiles according to (43) is indeed optimal.

4 EXPERIMENTS
4.1 Simulation
For the purpose of simulation we define a path that consists of two fourth order Bernstein-Bézier
curves that are merged into a spline in a way that continuity C2 of the path is achieved. The five
control points P0 to P4 define the first part of the path and the five control points R0 to R4 define the
second part of the path. The control point P0 defines the desired initial point and the control point
R4 the desired end point of the path. The control points P1 and R3 are defined in a way that the
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Fig. 6. Spline of two Bézier curves (each curve end points are marked with crosses) with marked velocity
points VP (hollow disks) and turning points TP (filled circles).

Table 1. The control points of two Bernstein-Bézier curves that form a smooth spline for the purpose of
simulation.

Curve 1 control points P0 [m] P1 [m] P2 [m] P3 [m] P4 [m]

(0, 0) (0.13,−0.075) (0.26,−0.15) (0.25, 0.3) (0.1, 0.3)

Curve 2 control points R0 [m] R1 [m] R2 [m] R3 [m] R4 [m]

(0, 0) (0.13,−0.075) (0.26,−0.15) (0.25, 0.3) (0.1, 0.3)

velocity and orientation requirements at the path end points are satisfied. Normally the placement
of initial control points should reflect the initial pose of the mobile robot and the final control points
the desired goal pose at the end of the path. The control point P4 defines the desired intermediate
point that the path should pass through. The control points P2 and P3 can be placed in a way that
additional desired properties at the path start or intermediate point are achieved. To achieve path
continuity, continuous tangential velocity and also continuous curvature of the spline, the control
points R0, R1 and R2 must be placed with respect to the control points P2, P3 and P4 according to
the rules (20), (21) and (23). According to the aforementioned rules we defined all the control points
that are presented in Table 1. The path that is defined by these control points is shown in Figure 6.
Note that the spline consists of two curves with very different lengths.

The goal of the optimization is to find the optimum velocity profile for the path given in Figure 6
as a spline of Bézier curves in a way that the following set of velocity and acceleration constraints
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is satisfies:
vmax = 0.4 m/s , ωmax = 2 rad/s ,

aT ,max = 0.5 m/s2 , aR,max = 0.4 m/s2 .
(47)

The most simple way of satisfying these constraints is to use a simple linear time function
t (λ) ∝ λ, since it’s first derivative with respect to λ is constant and all higher-order derivatives are
zero. The relations between the velocities and accelerations in normalized and real time become
trivial. With appropriate scaling of the time function the constraints can be satisfied. Clearly this
solution is very conservative.

An optimum velocity profile that is obtained with the proposed approach is presented in Figure
7. No velocity constraints are violated, and also the acceleration constraints are satisfied as it can
be observed from Figures 8 and 9. The optimized time function is shown in Figure 10, which is
clearly non-linear. The time needed to pass through the first curve is shorter that the time that
is required to pass through the second curve, although the normalized times of both curves are
equal. Figure 3 shows how the singularity points have been determined for the spline in Figure
6, where the locations of the velocity and the turning points are also marked. It can be seen that
turning points and velocity points alternate in the set of singularity points, as it is expected since
the curve curvature is a continuous function. The local optimum velocity profiles for the curve
in Figure 6 can be seen in Figures 4 and 5. These simulation results confirm applicability of the
proposed optimization approach.
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Fig. 7. Optimized velocity profile that satisfies the velocity and acceleration constraints.

4.2 Real robots
The usage of the presented velocity profile optimization has been verified on a real mobile robot. For
this purpose a small differentially driven wheeled mobile robot that is normally used in Micro Robot
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Soccer Tournaments (MiRoSoT) has been used. The mobile robot has implemented an internal
velocity controller in a way that the mobile robot can be controlled by the desired tangential and
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angular velocity. On top of the mobile robot is a special marker that can be observed by an overhead
camera and tracked by a machine vision system that runs in real-time with a frequency of 25 Hz
and enables implementation of mobile robot pose tracking. The vision tracking system can measure
position and orientation of the robot in the ground plane. These measurements can be processed in
order to estimate robot velocities and accelerations (first and second order differentiation of the
measured position). The robot was additionally equipped with a Inertial Measuring Unit (IMU)
that consists of a 3-axis gyroscope and accelerometer. Since a low cost IMU has been used, the
acceleration measurements contained a lot of noise and an appropriate low-pass filter needed to be
used.
For the purpose of the experiment a smooth trajectory that consists of four Bézier curves was

generated (Figure 11) in a similar way as presented in the simulation experiment. A two-degrees-of-
freedom control approach is normally used in the implementation of a trajectory tracking problem
(e.g. the predictive control algorithm [29]). A feed-forward part is used to drive the system into
the vicinity of the reference trajectory and a feedback part is used to compensate for the tracking
error that may occur due to imprecise system modeling, noise and other disturbances. However,
in the experiments only a feed-forward controller was used in order to verify that the proposed
optimization approach can generate a velocity profile that does not violate velocity and acceleration
constraints and also that the shape of the curve is preserved. Nevertheless, each robot drive wheel
has an internal velocity PID controller, therefore the mobile robot can be controlled with the desired
forward and angular velocities. Again, the requirements (47) were used in the optimization of the
velocity profile. If these requirements are respected, the dynamics of the internal wheel velocity
controllers are negligible. The results of the experiment are shown in Figures 11 to 13 where the
measured data from the visual tracking system is overlaid over the generated trajectory data. In
the bottom of Figure 12 also the measurements from the on-board gyroscope are shown, and in
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Fig. 11. Reference (dashed line) and measured path (solid line) that consists of four Bernstein-Bézier curves
(curve end points are marked with a cross).

Figure 13 measurements from the on-board accelerometer are also given. Although there is some
measurement noise present, the results confirm that the trajectory generated with the proposed
approach satisfies all the velocity and acceleration constraints and that the output path is close to
the desired path. This confirms the applicability of the propose approach.

5 CONCLUSION
In this paper an approach for velocity profile optimization of a Bernstein-Bézier spline has been
presented. The conditions that enable smooth generation of a spline from multiple curves that
may not all be of the same order have been presented. Generation of a spline with a continuous
curvature enabled usage of the proposed algorithm for velocity profile optimization. The proposed
optimization approach can take into account the velocity and acceleration constraints and produce a
continuous velocity profile. The optimum velocity profile has been generated based on the velocity
and turning points. These singularity points were used to define the conditions that limit the
optimization of local velocity profiles to local vicinity of each turning point, but their range is
sufficient for determination of the global optimum. The proposed algorithm exhibits some locality
property that in the case the path is modified or extended only the optimum local velocity profiles
on the modified or new segments need to be optimized again. Since the local optimum velocity
profiles can be evaluated independently of each other, the proposed approach is also suitable for
concurrent implementation. Verification of the proposed approach has been made in the simulation
environment and on real mobile robot. The approach enables optimization of a spline velocity
profile even in the case that the curves forming the spline are of substantially different lengths.
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